Emergent eigenstate solution to quantum dynamics far from equilibrium

Marcos Rigol

Department of Physics
The Pennsylvania State University

International ICTP school “Complex quantum systems out of equilibrium in many-body physics and beyond”. Yerevan, Armenia.

May 31, 2019

1. **Introduction**
 - An experiment with ultracold bosons in 1D lattices
 - Emergence of quasi-condensates at finite momentum

2. **Emergent eigenstate solution**
 - Noninteracting fermions and related models
 - Geometric quantum quench and emergent Hamiltonian

3. **Emergent Gibbs ensemble**
 - Effective cooling during the melting of a Mott insulator
 - Emergent Gibbs ensemble

4. **Fully interacting example**
 - Spinless fermions with nearest neighbor interactions (XXZ chain)

5. **Summary**
Experiments in the 1D regime

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

$$U_{1D}(x) = g_{1D} \delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{m \omega_\perp / 2\hbar}}$$

Lieb & Liniger ’63, Girardeau ’60 ($g_{1D} = \infty$)

$n(p)$: Momentum distribution
$n(x)$: Density distribution
Experiments in the 1D regime

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

$$U_{1D}(x) = g_{1D} \delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{m \omega_\perp/2\hbar}}$$

Lieb & Liniger ’63, Girardeau ’60 ($g_{1D} = \infty$)

Lieb, Schulz, and Mattis ’61 ($U/J = \infty$)

B. Paredes et al.,

$n(p)$: Momentum distribution \Leftrightarrow

$n(x)$: Density distribution \Leftrightarrow
Emergence of quasi-condensates at finite momentum

Predicted theoretically in:
Emergence of quasi-condensates at finite momentum

Predicted theoretically in:
Introduction

1. An experiment with ultracold bosons in 1D lattices
2. Emergence of quasi-condensates at finite momentum

Emergent eigenstate solution

1. Noninteracting fermions and related models
2. Geometric quantum quench and emergent Hamiltonian

Emergent Gibbs ensemble

1. Effective cooling during the melting of a Mott insulator
2. Emergent Gibbs ensemble

Fully interacting example

1. Spinless fermions with nearest neighbor interactions (XXZ chain)

Summary
Bose-Fermi mapping in a 1D lattice \((U \gg J)\)

Hard-core boson Hamiltonian in an external potential

\[
\hat{H} = -J \sum_i \left(\hat{b}_i^\dagger \hat{b}_{i+1} + \text{H.c.} \right) + \sum_i v_i \hat{n}_i
\]

Constraints on the bosonic operators

\[
\hat{b}_i^\dagger^2 = \hat{b}_i^2 = 0
\]
Bose-Fermi mapping in a 1D lattice \((U \gg J)\)

Hard-core boson Hamiltonian in an external potential

\[
\hat{H} = -J \sum_i \left(\hat{b}_i^\dagger \hat{b}_{i+1} + \text{H.c.} \right) + \sum_i v_i \hat{n}_i
\]

Constraints on the bosonic operators

\[
\hat{b}_i^\dagger 2 = \hat{b}_i^2 = 0
\]

\[\downarrow\]

Map to spins and then to fermions (Jordan-Wigner transformation)

\[
\hat{\sigma}_i^+ = \hat{f}_i^\dagger \prod_{\beta=1}^{i-1} e^{-i\pi \hat{f}_\beta^\dagger \hat{f}_\beta}, \quad \hat{\sigma}_i^- = \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} \hat{f}_i
\]

\[\downarrow\]

Non-interacting fermion Hamiltonian

\[
\hat{H}_F = -J \sum_i \left(\hat{f}_i^\dagger \hat{f}_{i+1} + \text{H.c.} \right) + \sum_i v_i \hat{n}_i^f
\]
One-body density matrix

One-body Green’s function

\[G_{ij} = \langle \Psi_{HCB} | \hat{\sigma}_i^- \hat{\sigma}_j^+ | \Psi_{HCB} \rangle = \langle \Psi_F | \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} \hat{f}_i \hat{f}_j^\dagger \prod_{\gamma=1}^{j-1} e^{-i\pi \hat{f}_\gamma^\dagger \hat{f}_\gamma} | \Psi_F \rangle \]

Time evolution

\[|\Psi_F(t)\rangle = e^{-i\hat{H}_F t} |\Psi_F^I\rangle = \prod_{\delta=1}^{N} \sum_{\sigma=1}^{L} P_{\sigma \delta}(t) \hat{f}_\sigma^\dagger |0\rangle \]

Marcos Rigol (Penn State) Emergent eigenstate solution May 31, 2019 7 / 33

One-body density matrix

One-body Green’s function

\[G_{ij} = \langle \Psi_{HCB} | \hat{\sigma}_i^- \hat{\sigma}_j^+ | \Psi_{HCB} \rangle = \langle \Psi_F | \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta \hat{f}_\beta} \hat{f}_i \hat{f}_j^\dagger \prod_{\gamma=1}^{j-1} e^{-i\pi \hat{f}_\gamma \hat{f}_\gamma} | \Psi_F \rangle \]

Time evolution

\[|\Psi_F(t)\rangle = e^{-i \hat{H}_F t} |\Psi_F^I\rangle = \prod_{\delta=1}^{N} \sum_{\sigma=1}^{L} P_{\sigma \delta}(t) \hat{f}_\sigma^\dagger |0\rangle \]

Exact Green’s function

\[G_{ij}(t) = \det \left[(P^l(t))^\dagger P^r(t) \right] \]

Computation time \(\propto L^2 N^3 \rightarrow \text{study very large systems} \)

\[\sim 10000 \text{ lattice sites,} \quad \sim 1000 \text{ particles} \]

1D lattice in equilibrium \((U \gg J)\)

Quasi-condensation in the presence of a trap

\[n \]

\[n_k \]

MR and A. Muramatsu, PRA 72, 013604 (2005).
1D lattice in equilibrium \((U \gg J)\)

Quasi-condensation in the presence of a trap

The Mott insulator in the presence of a trap

MR and A. Muramatsu, PRA 72, 013604 (2005).
Emergence of quasi-condensates at finite momentum

Density and momentum profiles during the expansion

Dynamics of the natural orbitals:
\[\sum_j \langle \hat{b}^\dagger_i \hat{b}_j \rangle \phi_\eta(j) = \lambda_\eta \phi_\eta(i) \]

Emergence of quasi-condensates at finite momentum

Density and momentum profiles during the expansion

Dynamics of the natural orbitals:
\[\sum_j \langle \hat{b}_i \hat{b}_j \rangle \phi_\eta(j) = \lambda_\eta \phi_\eta(i) \]

Emergence of quasi-condensates at finite momentum

Velocities of the quasi-condensate

\[v_{NO} = \pm 2aJ = \frac{\partial \epsilon_k}{\partial k} \]

Dispersion in the lattice

\[\epsilon_k = -2J \cos ka \implies k = \pm \pi/2a \]
Emergence of quasi-condensates at finite momentum

Quasi-condensate position

Velocity of the quasi-condensate

\[v_{NO} = \pm 2aJ = \frac{\partial \epsilon_k}{\partial k} \]

Dispersion in the lattice

\[\epsilon_k = -2J \cos ka \implies k = \pm \pi/2a \]

Quasi-condensate occupation

\[n_{k=\pm \pi/2}^{\text{max}} \sim \lambda_0^{\text{max}} \propto \sqrt{N} \]

One-body correlations

\[|\rho_{ij}| \propto \frac{1}{\sqrt{|x_i - x_j|}} \implies \]

Marcos Rigol (Penn State)
Emergent eigenstate solution
May 31, 2019 10 / 33
Emergence of quasi-condensates (finite U)

Density and momentum profiles during the expansion ($U = 40J$)

Emergence of quasi-condensates (finite U)

Density and momentum profiles during the expansion ($U = 40J$)

Quasi-condensate momenta

Gutzwiller mean-field theory for $U \gg J$ in 3D

Density profile

Momentum profile

Gutzwiller mean-field theory for $U \gg J$ in 3D

Density profile

Momentum profile

Marcos Rigol (Penn State) Emergent eigenstate solution May 31, 2019 12 / 33
Gutzwiller mean-field theory for $U \gg J$ in 3D

Gutzwiller mean-field theory for $U \gg J$ in 3D

Marcos Rigol (Penn State)
Introduction

An experiment with ultracold bosons in 1D lattices
Emergence of quasi-condensates at finite momentum

Emergent eigenstate solution

Noninteracting fermions and related models
Geometric quantum quench and emergent Hamiltonian

Emergent Gibbs ensemble
Effective cooling during the melting of a Mott insulator
Emergent Gibbs ensemble

Fully interacting example
Spinless fermions with nearest neighbor interactions (XXZ chain)

Summary
Spontaneous emergence of ground-state-like correlations
Spontaneous emergence of ground-state-like correlations

Ground-state construction in inhomogeneous fields for correlations and entanglement entropy
Domain wall melting in 1D

- **Spontaneous emergence of ground-state-like correlations**

- **Ground-state construction in inhomogeneous fields for correlations and entanglement entropy**

- **Is the time-evolving state the ground state of a local Hamiltonian?**
 Free fermions (and related models) & spin-1/2 XXZ:
Domain wall melting in 1D

- **Spontaneous emergence of ground-state-like correlations**

- **Ground-state construction in inhomogeneous fields for correlations and entanglement entropy**

- **Is the time-evolving state the ground state of a local Hamiltonian?**
 Free fermions (and related models) & spin-1/2 XXZ:

This is an example of a (geometric) quantum quench:

\[|\psi_0\rangle \text{ is an eigenstate of some } \hat{H}_0(\text{local}), \text{ and } |\psi(t)\rangle = e^{-i\hat{H}t}|\psi_0\rangle \]
1. **Introduction**
 - An experiment with ultracold bosons in 1D lattices
 - Emergence of quasi-condensates at finite momentum

2. **Emergent eigenstate solution**
 - Noninteracting fermions and related models
 - Geometric quantum quench and emergent Hamiltonian

3. **Emergent Gibbs ensemble**
 - Effective cooling during the melting of a Mott insulator
 - Emergent Gibbs ensemble

4. **Fully interacting example**
 - Spinless fermions with nearest neighbor interactions (XXZ chain)

5. **Summary**
Emergent eigenstate solution

Initial state:

\[(\hat{H}_0 - \lambda)|\psi_0\rangle = 0\]

Initial state:

\[(\hat{H}_0 - \lambda)|\psi_0\rangle = 0\]

Time evolving state \(|\psi(t)\rangle = e^{-i\hat{H}t}|\psi_0\rangle\)

\[(e^{-i\hat{H}t}\hat{H}_0 e^{i\hat{H}t} - \lambda)|\psi(t)\rangle \equiv \hat{M}(t)|\psi(t)\rangle = 0\]

\(|\psi(t)\rangle\) is an eigenstate of \(\hat{M}(t)\).

Emergent eigenstate solution

Initial state:

\[(\hat{H}_0 - \lambda)|\psi_0\rangle = 0\]

Time evolving state \[|\psi(t)\rangle = e^{-i\hat{H}t}|\psi_0\rangle\]

\[(e^{-i\hat{H}t}\hat{H}_0 e^{i\hat{H}t} - \lambda)|\psi(t)\rangle \equiv \hat{M}(t)|\psi(t)\rangle = 0\]

\[|\psi(t)\rangle\] is an eigenstate of \(\hat{M}(t)\).

This is, in general, a useless observation as

\[\hat{M}(t) = \hat{H}_0 - \lambda - it[\hat{H}, \hat{H}_0] + \frac{(it)^2}{2!}[\hat{H}, [\hat{H}, \hat{H}_0]] + \ldots\]

is highly nonlocal. Note that \(\hat{M}_H(t) = \hat{H}_0 - \lambda\).

Emergent eigenstate solution

Initial state:

\[(\hat{H}_0 - \lambda)|\psi_0\rangle = 0\]

Time evolving state \(|\psi(t)\rangle = e^{-i\hat{H}t}|\psi_0\rangle\)

\[
(e^{-i\hat{H}t} \hat{H}_0 e^{i\hat{H}t} - \lambda)|\psi(t)\rangle \equiv \hat{M}(t)|\psi(t)\rangle = 0
\]

\(|\psi(t)\rangle\) is an eigenstate of \(\hat{M}(t)\).

This is, in general, a useless observation as

\[
\hat{M}(t) = \hat{H}_0 - \lambda - it[\hat{H}, \hat{H}_0] + \frac{(it)^2}{2!} [\hat{H}, [\hat{H}, \hat{H}_0]] + \ldots
\]

is highly nonlocal. Note that \(\hat{M}_H(t) = \hat{H}_0 - \lambda\).

Something remarkable occurs if

\[
[\hat{H}, \hat{H}_0] = ia_0\hat{Q} \quad \text{with} \quad [\hat{H}, \hat{Q}] = 0.
\]

We can define \(\hat{H}(t) \equiv \hat{H}_0 + a_0 t \hat{Q} - \lambda\), and \(|\psi(t)\rangle\) is an eigenstate of \(\hat{H}(t)\).

\(\hat{H}_H(t) = \hat{H}_0 - \lambda\), \(\hat{H}(t)\) is a local conserved quantity!

Noninteracting fermions (or models mappable to them)

The domain wall $|11\ldots1100\ldots00\rangle$ is the ground state of:

$$\hat{H}_0 = \sum_l l \hat{n}_l$$

The physical Hamiltonian is:

$$\hat{H} = -\sum_l (\hat{f}^\dagger_l \hat{f}_l + H.c.)$$

Which means that ($a_0 = -1$):

$$[\hat{H}, \hat{H}_0] = -i \hat{Q},$$

with

$$\hat{Q} = \sum_l (i \hat{f}^\dagger_l \hat{f}_l + H.c.)$$

\hat{Q} is the charge current, which is “conserved” (up to boundary terms).

And the emergent Hamiltonian is

$$\hat{H}^E(t) = \sum_l l \hat{n}_l - t \hat{Q} - \lambda |\psi(t)\rangle$$

is the ground state of $\hat{H}^E(t)$ (up to corrections that vanish as $L \to \infty$).
Noninteracting fermions (or models mappable to them)

The domain wall $|11\ldots1100\ldots00\rangle$ is the ground state of:

$$\hat{H}_0 = \sum_l l \hat{n}_l$$

The physical Hamiltonian is:

$$\hat{H} = -\sum_l (\hat{f}_{l+1}^\dagger \hat{f}_l + \text{H.c.})$$

Marcos Rigol (Penn State)
Noninteracting fermions (or models mappable to them)

The domain wall $|11 \ldots 1100 \ldots 00\rangle$ is the ground state of:

$$\hat{H}_0 = \sum_l l \hat{n}_l$$

The physical Hamiltonian is:

$$\hat{H} = -\sum_l (\hat{f}_{l+1}^{\dagger} \hat{f}_l + \text{H.c.})$$

Which means that ($a_0 = -1$):

$$[\hat{H}, \hat{H}_0] = -i\hat{Q}, \quad \text{with} \quad \hat{Q} = \sum_l (i \hat{f}_{l+1}^{\dagger} \hat{f}_l + \text{H.c.})$$

\hat{Q} is the charge current, which is “conserved” (up to boundary terms).
The domain wall $|11 \ldots 1100 \ldots 00\rangle$ is the ground state of:

$$\hat{H}_0 = \sum_l l \hat{n}_l$$

The physical Hamiltonian is:

$$\hat{H} = -\sum_l (\hat{f}_{l+1}^\dagger \hat{f}_l + \text{H.c.})$$

Which means that ($a_0 = -1$):

$$[\hat{H}, \hat{H}_0] = -i \hat{Q}, \quad \text{with} \quad \hat{Q} = \sum_l (i \hat{f}_{l+1}^\dagger \hat{f}_l + \text{H.c.}).$$

\hat{Q} is the charge current, which is “conserved” (up to boundary terms).

And the emergent Hamiltonian is

$$\hat{H}(t) = \sum_l l \hat{n}_l - t \hat{Q} - \lambda$$

$|\psi(t)\rangle$ is the ground state of $\hat{H}(t)$ (up to corrections that vanish as $L \to \infty$).
Noninteracting fermions (or models mappable to them)

Boundary terms are responsible for the nonvanishing charge current

\[
[H, Q] = -2i(\hat{n}_1 - \hat{n}_L)
\]

This means that \(\langle \psi(t)|\hat{H}(t)|\psi(t)\rangle \neq 0 \).
Noninteracting fermions (or models mappable to them)

Boundary terms are responsible for the nonvanishing charge current

\[
[H, Q] = -2i(\hat{n}_1 - \hat{n}_L)
\]

This means that \(\langle \psi(t)|\hat{H}(t)|\psi(t)\rangle \neq 0 \).

One can compute it! Writing \(\langle \psi_0|\hat{H}_H(t)|\psi_0\rangle \), one gets

\[
\sum_{n=1}^{\infty} \frac{(-n)i^n t^{n+1}}{(n + 1)!} \langle \psi_0|[\hat{H}, [\hat{H}, \ldots [\hat{H}, Q] \ldots]]|\psi_0\rangle.
\]
Noninteracting fermions (or models mappable to them)

Boundary terms are responsible for the nonvanishing charge current

\[[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L) \]

This means that \(\langle \psi(t) | \hat{H}(t) | \psi(t) \rangle \neq 0 \).

One can compute it! Writing \(\langle \psi_0 | \hat{H}(t) | \psi_0 \rangle \), one gets

\[
\sum_{n=1}^{\infty} \frac{(-n)i^n t^{n+1}}{(n+1)!} \langle \psi_0 | [\hat{H}, [\hat{H}, \ldots [\hat{H}, \hat{Q}] \ldots]] |\psi_0 \rangle.
\]

Quadratic term (\(n = 1 \)):

\[-(i/2)t^2 \langle \psi_0 | [\hat{H}, \hat{Q}] | \psi_0 \rangle = -t^2 \langle \psi_0 | (\hat{n}_1 - \hat{n}_L) | \psi_0 \rangle = -t^2 \]

Leads to a redefinition \(\lambda \rightarrow \lambda(t) = \lambda - t^2 \). Take particle number \(N = L/2 \).
Noninteracting fermions (or models mappable to them)

Boundary terms are responsible for the nonvanishing charge current

\[[\hat{H}, \hat{Q}] = -2i (\hat{n}_1 - \hat{n}_L) \]

This means that \(\langle \psi(t) | \hat{H}(t) | \psi(t) \rangle \neq 0 \).

One can compute it! Writing \(\langle \psi_0 | \hat{H}(t) | \psi_0 \rangle \), one gets

\[
\sum_{n=1}^{\infty} \frac{(-n)i^n t^{n+1}}{(n + 1)!} \langle \psi_0 | [\hat{H}, [\hat{H}, \ldots [\hat{H}, \hat{Q}] \ldots]] | \psi_0 \rangle.
\]

Quadratic term \((n = 1) \):

\[-(i/2)t^2 \langle \psi_0 | [\hat{H}, \hat{Q}] | \psi_0 \rangle = -t^2 \langle \psi_0 | (\hat{n}_1 - \hat{n}_L) | \psi_0 \rangle = -t^2\]

Leads to a redefinition \(\lambda \rightarrow \lambda(t) = \lambda - t^2 \). Take particle number \(N = L/2 \).

Higher orders vanish up to the term:

\[\left((2N + 1)t^{2N+2} / (2N + 2)!\right) \times O(1), \]

The result is exponentially small for \(t \lesssim 2N/e \).
Noninteracting fermions (or models mappable to them)

Boundary terms are responsible for the nonvanishing charge current

\[[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L) \]

This means that \(\langle \psi(t)|\hat{H}(t)|\psi(t)\rangle \neq 0 \).

One can compute it! Writing \(\langle \psi_0|\hat{H}(t)|\psi_0 \rangle \), one gets

\[
\sum_{n=1}^{\infty} \frac{(-n)i^{n}t^{n+1}}{(n + 1)!} \langle \psi_0 | [\hat{H}, [\hat{H}, \ldots [\hat{H}, \hat{Q}] \ldots]] | \psi_0 \rangle.
\]

Quadratic term \((n = 1) \):

\[-(i/2)t^2 \langle \psi_0|[\hat{H}, \hat{Q}]|\psi_0 \rangle = -t^2 \langle \psi_0|(\hat{n}_1 - \hat{n}_L)|\psi_0 \rangle = -t^2\]

Leads to a redefinition \(\lambda \rightarrow \lambda(t) = \lambda - t^2 \). Take particle number \(N = L/2 \).

Higher orders vanish up to the term:

\[[(2N + 1)t^{2N+2}/(2N + 2)!] \times O(1), \]

The result is exponentially small for \(t \lesssim 2N/e \). Physically, for \(t \lesssim N/2 \) particles (holes) have not reached the edge of the lattice.
Noninteracting fermions (or models mappable to them)

Boundary terms are responsible for the nonvanishing charge current

\[[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L) \]

This means that \(\langle \psi(t) | \hat{H}(t) | \psi(t) \rangle \neq 0 \).

One can compute it! Writing \(\langle \psi_0 | \hat{H}_H(t) | \psi_0 \rangle \), one gets

\[
\sum_{n=1}^{\infty} \frac{(-n)\imath n t^{n+1}}{(n + 1)!} \langle \psi_0 | [\hat{H}, \hat{H}, \ldots [\hat{H}, \hat{Q}] \ldots] | \psi_0 \rangle.
\]

Numerical verification

\[\hat{H} = -\sum_l (f_{l+1}^{\dagger} f_l + \text{H.c.}) \rightarrow |\psi(t)\rangle \]

\[\hat{H}(t) = \sum_l l \hat{n}_l - t \hat{Q} - \lambda \rightarrow |\psi_t\rangle \]

Overlap

\[|\langle \psi_t | \psi(t) \rangle| \quad \Rightarrow \quad \text{Overlap} \]

Marcos Rigol (Penn State) Emergent eigenstate solution May 31, 2019 19 / 33
Introduction

- An experiment with ultracold bosons in 1D lattices
- Emergence of quasi-condensates at finite momentum

Emergent eigenstate solution

- Noninteracting fermions and related models
- Geometric quantum quench and emergent Hamiltonian

Emergent Gibbs ensemble

- Effective cooling during the melting of a Mott insulator
- Emergent Gibbs ensemble

Fully interacting example

- Spinless fermions with nearest neighbor interactions (XXZ chain)

Summary
Dynamics of hard-core bosons at finite temperature

One-body density matrix (grand-canonical ensemble)

$$\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i \hat{H} t} \hat{b}_i^\dagger \hat{b}_j e^{-i \hat{H} t} e^{-(\hat{H}_0 - \mu \hat{N})/T} \right] \quad \text{where} \quad Z_0 = \text{Tr}[e^{-(\hat{H}_0 - \mu \hat{N})/T}]$$

MR, PRA 72, 063607 (2005); W. Xu and MR, PRA 95, 033617 (2017).
Dynamics of hard-core bosons at finite temperature

One-body density matrix (grand-canonical ensemble)

\[\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i \hat{H} t} \hat{b}_i^\dagger \hat{b}_j e^{-(\hat{H}_0 - \mu \hat{N}) / T} \right] \]

where \(Z_0 = \text{Tr}[e^{-(\hat{H}_0 - \mu \hat{N}) / T}] \)

Mapping to noninteracting fermions

\[\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i \hat{H} t} \left(\prod_{\alpha=1}^{i-1} e^{-i \pi \hat{f}_\alpha^\dagger \hat{f}_\alpha} \right) \hat{f}_i^\dagger \hat{f}_j \left(\prod_{\beta=1}^{j-1} e^{i \pi \hat{f}_\beta^\dagger \hat{f}_\beta} \right) e^{-i \hat{H} t} e^{-(\hat{H}_0 - \mu \hat{N}) / T} \right] \]

MR, PRA 72, 063607 (2005); W. Xu and MR, PRA 95, 033617 (2017).
Dynamics of hard-core bosons at finite temperature

One-body density matrix (grand-canonical ensemble)

\[\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i\hat{H}t} \hat{b}_i^\dagger \hat{b}_j e^{-i\hat{H}t} e^{-(\hat{H}_0 - \mu \hat{N})/T} \right] \]

where \[Z_0 = \text{Tr} [e^{-(\hat{H}_0 - \mu \hat{N})/T}] \]

Mapping to noninteracting fermions

\[\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i\hat{H}t} \left(\prod_{\alpha=1}^{i-1} e^{-i\pi \hat{f}_\alpha^\dagger \hat{f}_\alpha} \right) \hat{f}_i^\dagger \hat{f}_j \left(\prod_{\beta=1}^{j-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} \right) e^{-i\hat{H}t} e^{-(\hat{H}_0 - \mu \hat{N})/T} \right] \]

Exact one-body density matrix

\[\rho_{ij}(t) = \frac{(-1)^{i-j}}{Z} \left\{ \text{det} \left[U_0^\dagger e^{i\hat{H}t} O_j (I - A) O_i e^{-i\hat{H}t} U_0 + e^{-(E_0 - \mu)/T} \right] \right\} \\
- \text{det} \left[U_0^\dagger e^{i\hat{H}t} O_j O_i e^{-i\hat{H}t} U_0 + e^{-(E_0 - \mu)/T} \right] \}

Computation time \(\propto L^5 \): \(\sim 1000 \) sites

MR, PRA 72, 063607 (2005); W. Xu and MR, PRA 95, 033617 (2017).
Melting of a finite-temperature domain wall

Initial state is thermal equilibrium state of:

\[\hat{H}_0 = - \sum_l (b_{l+1}^\dagger b_l + \text{H.c.}) + V_1 \sum_l l \hat{n}_l. \]

W. Xu and MR, PRA 95, 033617 (2017).
Melting of a finite-temperature domain wall

Initial state is thermal equilibrium state of:

\[\hat{H}_0 = - \sum_l (\hat{b}_{l+1}^\dagger \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \hat{n}_l. \]

\[n(k) \text{ for: } (a) \ T = 0.1 \quad (b) \ T = 0.5 \quad (c) \ T = 1.0 \]

W. Xu and MR, PRA 95, 033617 (2017).
Melting of a finite-temperature domain wall

Dynamics
- $T = 0$
- $T = 0.1$
- $T = 0.5$
- $T = 1.0$

Marcos Rigol (Penn State)
Melting of a finite-temperature domain wall

![Graph showing the dynamics and equilibrium of $[n_k]^m_{\text{max}}$ as a function of N for different temperatures T. The graph illustrates the emergence of eigenstate solutions at $T = 0$.]

Dynamics Equilibrium

- $T = 0$
- $T = 0.1$
- $T = 0.5$
- $T = 1.0$

Marcos Rigol (Penn State) Emergent eigenstate solution

May 31, 2019 24 / 33
1. Introduction
 - An experiment with ultracold bosons in 1D lattices
 - Emergence of quasi-condensates at finite momentum

2. Emergent eigenstate solution
 - Noninteracting fermions and related models
 - Geometric quantum quench and emergent Hamiltonian

3. Emergent Gibbs ensemble
 - Effective cooling during the melting of a Mott insulator
 - Emergent Gibbs ensemble

4. Fully interacting example
 - Spinless fermions with nearest neighbor interactions (XXZ chain)

5. Summary
Emergent Gibbs ensemble

Initial state:

\[\hat{\rho}_0 = Z_0^{-1} e^{-\beta \hat{H}_0} , \quad \text{where} \quad Z_0 = \text{Tr}[e^{-\beta \hat{H}_0}] \]

Emergent Gibbs ensemble

Initial state:

\[\hat{\rho}_0 = Z_0^{-1} e^{-\beta \hat{H}_0}, \quad \text{where} \quad Z_0 = \text{Tr}[e^{-\beta \hat{H}_0}] \]

Time evolving state:

\[\hat{\rho}(t) = Z_0^{-1} e^{-i\hat{H}t} e^{-\beta \hat{H}_0} e^{i\hat{H}t} = Z_0^{-1} \exp \left(-\beta \left[e^{-i\hat{H}t} \hat{H}_0 e^{i\hat{H}t} \right] \right). \]

Emergent Gibbs ensemble

Initial state:

\[\hat{\rho}_0 = Z_0^{-1} e^{-\beta \hat{H}_0}, \quad \text{where} \quad Z_0 = \text{Tr}[e^{-\beta \hat{H}_0}] \]

Time evolving state:

\[\hat{\rho}(t) = Z_0^{-1} e^{-i\hat{H}_t} e^{-\beta \hat{H}_0} e^{i\hat{H}_t} = Z_0^{-1} \exp \left(-\beta \left[e^{-i\hat{H}_t} \hat{H}_0 e^{i\hat{H}_t} \right] \right). \]

Again, one can introduce an operator \(\hat{\mathcal{M}}'(t) \equiv e^{-i\hat{H}_t} \hat{H}_0 e^{i\hat{H}_t} \) so that:

\[\hat{\rho}(t) = Z_0^{-1} e^{-\beta \hat{\mathcal{M}}'(t)}. \]

Emergent Gibbs ensemble

Initial state:

\[\hat{\rho}_0 = Z_0^{-1} e^{-\beta \hat{H}_0}, \quad \text{where} \quad Z_0 = \text{Tr}[e^{-\beta \hat{H}_0}] \]

Time evolving state:

\[\hat{\rho}(t) = Z_0^{-1} e^{-i\hat{H}t} e^{-\beta \hat{H}_0} e^{i\hat{H}t} = Z_0^{-1} \exp\left(-\beta \left[e^{-i\hat{H}t} \hat{H}_0 e^{i\hat{H}t}\right]\right). \]

Again, one can introduce an operator \(\hat{\mathcal{M}}'(t) \equiv e^{-i\hat{H}t} \hat{H}_0 e^{i\hat{H}t} \) so that:

\[\hat{\rho}(t) = Z_0^{-1} e^{-\beta \hat{\mathcal{M}}'(t)}. \]

If \(\hat{\mathcal{M}}'(t) \) is a local operator, \(\hat{\mathcal{M}}'(t) \equiv \hat{\mathcal{H}}'(t) \):

\[\hat{\Sigma}(t) = Z_0^{-1} e^{-\beta \hat{\mathcal{H}}'(t)}. \]

Then the time-evolving state is a thermal state of an emergent Hamiltonian. \textbf{Note that the temperature “remains” the same as in the initial state.}

Initial state with a finite hopping amplitude

Initial state is a stationary state of:

\[\hat{H}_0 = -\sum_l (\hat{b}_{l+1}^\dagger \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \hat{n}_l. \]

Initial state with a finite hopping amplitude

Initial state is a stationary state of:

\[\hat{H}_0 = -\sum_l (\hat{b}^\dagger_{l+1} \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \hat{n}_l. \]

The physical Hamiltonian is \[\hat{H} = -\sum_l (\hat{f}^\dagger_{l+1} \hat{f}_l + \text{H.c.}) \]

Initial state with a finite hopping amplitude

Initial state is a stationary state of:

\[
\hat{H}_0 = - \sum_l (\hat{b}_{l+1} \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \hat{n}_l .
\]

The physical Hamiltonian is

\[
\hat{H} = - \sum_l (\hat{f}_{l+1} \hat{f}_l + \text{H.c.})
\]

The emergent Hamiltonian takes the form:

\[
\hat{\mathcal{H}}(t) = - \sum_l (\hat{f}_{l+1} \hat{f}_l + \text{H.c.}) - \lambda
\]

\[
+ V_1 \left[\sum_l l \hat{n}_l - t \sum_l (i \hat{f}_{l+1} \hat{f}_l + \text{H.c.}) + t^2 (\hat{n}_1 - \hat{n}_L) \right].
\]

Initial state with a finite hopping amplitude

Initial state is a stationary state of:

\[\hat{H}_0 = - \sum_l (\hat{b}_{l+1} \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \hat{n}_l. \]

The physical Hamiltonian is \(\hat{H} = - \sum_l (\hat{f}_{l+1} \hat{f}_l + \text{H.c.}) \)

The emergent Hamiltonian takes the form:

\[\hat{H}(t) = - \sum_l (\hat{f}_{l+1} \hat{f}_l + \text{H.c.}) - \lambda \]

\[+ V_1 \left[\sum_l l \hat{n}_l - t \sum_l (i \hat{f}_{l+1} \hat{f}_l + \text{H.c.}) + t^2 (\hat{n}_1 - \hat{n}_L) \right]. \]

\(\hat{H}(t) \) can be rewritten as (replacing \(\hat{n}_1 \rightarrow 1 \) and \(\hat{n}_L \rightarrow 0 \))

\[\hat{H}(t) = - A(t) \sum_l (e^{-i \varphi(t)} \hat{f}_{l+1} \hat{f}_l + \text{H.c.}) + V_1 \sum_l l \hat{n}_l - (\lambda - V_1 t^2), \]

where \(A(t) = \sqrt{1 + (V_1 t)^2} \) and \(\varphi(t) = \arctan (V_1 t) \).

Effective Hamiltonian:

\[
\hat{H}_{\text{eff}}(t) = -\sum_{l} (e^{-i\varphi(t)} \hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) + \frac{V_{1}}{\sqrt{1 + (V_{1}t)^{2}}} \sum_{l} l \hat{n}_{l},
\]

and effective temperature \(T_{\text{eff}}(t) = T / \sqrt{1 + (V_{1}t)^{2}} \).
Effective temperature

Effective Hamiltonian:

\[\hat{H}_{\text{eff}}(t) = - \sum_l (e^{-i\varphi(t)} \hat{f}_{l+1} \hat{f}_l + \text{H.c.}) + \frac{V_1}{\sqrt{1 + (V_1 t)^2}} \sum_l l \hat{n}_l, \]

and effective temperature \(T_{\text{eff}}(t) = T/\sqrt{1 + (V_1 t)^2} \).

W. Xu and MR, PRA 95, 033617 (2017).
Effective Hamiltonian:

\[\hat{\mathcal{H}}_{\text{eff}}(t) = -\sum_{l} (e^{-i\varphi(t)} \hat{f}_{l+1} \hat{f}_{l} + \text{H.c.}) + \frac{V_{1}}{\sqrt{1 + (V_{1}t)^{2}}} \sum_{l} l \hat{n}_{l}, \]

and effective temperature \(T_{\text{eff}}(t) = T / \sqrt{1 + (V_{1}t)^{2}} \).
Outline

1. Introduction
 - An experiment with ultracold bosons in 1D lattices
 - Emergence of quasi-condensates at finite momentum

2. Emergent eigenstate solution
 - Noninteracting fermions and related models
 - Geometric quantum quench and emergent Hamiltonian

3. Emergent Gibbs ensemble
 - Effective cooling during the melting of a Mott insulator
 - Emergent Gibbs ensemble

4. Fully interacting example
 - Spinless fermions with nearest neighbor interactions (XXZ chain)

5. Summary
Spinless fermions with nearest neighbor interactions

Physical Hamiltonian:

\[\hat{H}(V) = \sum_{l=-N+1}^{N-1} \hat{h}_l(V), \text{ with } \hat{h}_l(V) = -(\hat{f}_{l+1}^\dagger \hat{f}_l + \text{H.c.}) + V(\hat{n}_l - 1/2)(\hat{n}_{l+1} - 1/2) \]
Spinless fermions with nearest neighbor interactions

Physical Hamiltonian:

\[\hat{H}(V) = \sum_{l=-N+1}^{N-1} \hat{h}_l(V), \quad \text{with} \quad \hat{h}_l(V) = -\left(\hat{f}_{l+1}^{\dagger} \hat{f}_l + \text{H.c.} \right) + V(\hat{n}_l - 1/2)(\hat{n}_{l+1} - 1/2) \]

The domain wall is a highly excited eigenstate of the “boost” operator:

\[\hat{H}_0(V) = \sum_{l=-N+1}^{N-1} l \hat{h}_l(V) \]
Spinless fermions with nearest neighbor interactions

Physical Hamiltonian:

\[
\hat{H}(V) = \sum_{l=-N+1}^{N-1} \hat{h}_l(V), \quad \text{with} \quad \hat{h}_l(V) = -(\hat{f}_{l+1}^{\dagger} \hat{f}_l + \text{H.c.}) + V (\hat{n}_l - 1/2)(\hat{n}_{l+1} - 1/2)
\]

The domain wall is a highly excited eigenstate of the “boost” operator:

\[
\hat{H}_0(V) = \sum_{l=-N+1}^{N-1} l \hat{h}_l(V)
\]

The commutator \([\hat{H}(V), \hat{H}_0(V)] = -i\hat{Q}(V)\) results in:

\[
\hat{Q}(V) = \sum_{l=-N+1}^{N-2} \left\{ (i\hat{f}_{l+2}^{\dagger} \hat{f}_l + \text{H.c.}) - V (i\hat{f}_{l+1}^{\dagger} \hat{f}_l + \text{H.c.})(\hat{n}_{l+2} - 1/2) - V (i\hat{f}_{l+2}^{\dagger} \hat{f}_{l+1} + \text{H.c.})(\hat{n}_l - 1/2) \right\}
\]
Spinless fermions with nearest neighbor interactions

Physical Hamiltonian:

\[\hat{H}(V) = \sum_{l=-N+1}^{N-1} \hat{h}_l(V), \text{ with } \hat{h}_l(V) = -(\hat{f}_{l+1}^\dagger \hat{f}_l + \text{H.c.}) + V(\hat{n}_l - 1/2)(\hat{n}_{l+1} - 1/2) \]

The domain wall is a highly excited eigenstate of the “boost” operator:

\[\hat{H}_0(V) = \sum_{l=-N+1}^{N-1} l \hat{h}_l(V) \]

The commutator \([\hat{H}(V), \hat{H}_0(V)] = -i \hat{Q}(V)\) results in:

\[\hat{Q}(V) = \sum_{l=-N+1}^{N-2} \left\{ (i \hat{f}_{l+2}^\dagger \hat{f}_l + \text{H.c.}) - V(i \hat{f}_{l+1}^\dagger \hat{f}_l + \text{H.c.})(\hat{n}_{l+2} - 1/2) - V(i \hat{f}_{l+2}^\dagger \hat{f}_{l+1} + \text{H.c.})(\hat{n}_l - 1/2) \right\} \]

And the emergent Hamiltonian is:

\[\hat{H}_V(t) = \hat{H}_0(V) + t \hat{Q}(V) \]
Spinless fermions with nearest neighbor interactions

Numerical verification

\[\hat{H}(V) \rightarrow |\psi(t)\rangle \]

\[\hat{H}_V(t) \rightarrow |\psi_t\rangle \]

Overlap

\[|\langle \psi_t | \psi(t) \rangle| \]
Spinless fermions with nearest neighbor interactions

Numerical verification

\[\hat{H}(V) \rightarrow |\psi(t)\rangle \]

\[\hat{H}_V(t) \rightarrow |\psi_t\rangle \]

Overlap

\[|\langle \psi_t | \psi(t) \rangle| \]
Spinless fermions with nearest neighbor interactions

Numerical verification

\[\hat{H}(V) \rightarrow |\psi(t)\rangle \]
\[\hat{H}_V(t) \rightarrow |\psi_t\rangle \]

Overlap

\[|\langle \psi_t | \psi(t) \rangle| \]

Site and momentum occupations

\[\hat{n}_l = \hat{f}_l^\dagger \hat{f}_l \]
\[n(q) = \frac{1}{2N + 1} \sum_{j,l} e^{iq(j-l)} \langle \hat{f}_j^\dagger \hat{f}_l \rangle \]
The emergent eigenstate solution explains why ground-state-like power-law correlations emerge during the meting of domain walls.
The emergent eigenstate solution explains why ground-state-like power-law correlations emerge during the meting of domain walls.

Only one conserved (or quasi-conserved) quantity is needed for the emergent Hamiltonian construction to work.

- Nonintegrable systems close to integrability?
- More general nonintegrable systems?
The emergent eigenstate solution explains why ground-state-like power-law correlations emerge during the meting of domain walls.

Only one conserved (or quasi-conserved) quantity is needed for the emergent Hamiltonian construction to work:
- Nonintegrable systems close to integrability?
- More general nonintegrable systems?

An effective cooling takes place during the melting of finite-T Mott insulators (internal energy is converted into center of mass energy).
The emergent eigenstate solution explains why ground-state-like power-law correlations emerge during the meting of domain walls.

Only one conserved (or quasi-conserved) quantity is needed for the emergent Hamiltonian construction to work:

- Nonintegrable systems close to integrability?
- More general nonintegrable systems?

An effective cooling takes place during the melting of finite-T Mott insulators (internal energy is converted into center of mass energy).

The emergent Gibbs ensemble can be used to describe the dynamics of finite-temperature initial states.
Collaborators

- Deepak Iyer (Penn State → Bucknell)
- Ranjan Modak (Penn State → ICTP, Trieste)
- Lev Vidmar (Penn State → Jožef Stefan Institute)
- Wei Xu (Penn State → PayPal)

Collaborators in the Bose-Hubbard and Fermi-Hubbard projects

- Alejandro Muramatsu (Buenos Aires 1951- Stuttgart 2015)

Supported by:

[NSF and ONR logos]